Micro processor controller V6.1

MY106/MY406/MY506/MY706/MY906 INSTRUCTION MANUAL

MY061-E2

Carefully read all the instructions in this manual. Please place this manual in a convenient location for easy reference.

Specification

- MY06 series instrument: 4 big LED display, 0-100%LED bar display output, Accuracy: (Max±0.2% fus or ±1)≤±1 digit
 - RTD or TC input, the maximum resolution is 0.1 degree. Analog input ,the maximum resolution is 0.001 degree.
- Auto/Manual operation control function, 2 PID (heating/Cooling) outputs.
- Pleases make sure that the power and output types are right before using, there is a wire diagram beside the controller, in the code NO4 and No 5, you can see the output mode, such as relay, SSR or 4-20mA etc. (SEE 1. PRODUCT CHECK)
- Clients can set TC, RTD by keyboard ,please set the input type coincide with the sensor, Check details of the manual "6.3" parameter INP1,If need analog signal inputs, please specified when order. (Except 0-20mV or 0-50mV input)
- Controller have Auto/Manual function, Check"7. MANUAL OPERATION"
- As usual, controllers were set as out1(heating),out2(coolong) before leaving factory, of course, users can select out1(cooling), check manual "6.3 Parameter Oud in level3"
- 2 outputs PID heating/cooling function, check manual "10.Heating/cooling specification"
- PID control: As usual, controllers have PID control before leaving factory, with Autotuning function.
- ON/OFF Control: Set P=0.0,it will be changed as on/off control. Check manual"6.1 parameter P" and "9.cotrol action instruction". Position difference is HYS. when heating:PV>SV, OUT stop, when PV<SV-HYS, OUT start, fitting for OUT1. When Cooling: PV>SV+HYS, output start, when PV<SV,output stop, fitting for OUT1 or OUT2</p>
- Proportional control: when P≠0, I=0, d=0, which is purely Proportional control, Proportional reset is set as rSt, proportional cycle is Cyt. When heating, rSt value is smaller, then output is smaller. When cooling: rSt value is smaller, output is bigger. These fit for OUT1 or OUT2. Check manaual "9. Control mode" "10. Heating/Cooling"
- when PID Control, we suggest adopt the Autotuning to improve the control effect. Check"8.Autotuning"
- When anolog signal output, can using output buffer function when in some special control position, which can make output more stable.
 Check manual 6.2 level 2 bUFF parameter, and 6.3 level 3 bEr parameter.

1. PRODUCT CHECK

MY106 (48mmX48mm)
MY406 (48mmX96mm)
MY506 (96mmX48mm)
MY706 (72mmX72mm)
MY906 (96mmX96mm)

(1) Control action

N: No action F: ReversePID action (for Heating)

D: Direct PID action (for cooling) W: Heat/cool double PID action

B: ON/OFF control (for heating) M: ON/OFF control (for cooling)

(2) Input type, (3) Range code: See"12.INPUT RANGE TABLE"

(4) First control output [OUT1]

N: No action

M: Relay contact V: Voltage pulse(for SSR)
2: Current(DC0~20mA) 8: Current(DC4 ~ 20 mA)

5: 0~5VDC 6: 0~10VDC

7: 1~5VDC T:Triac single phasezero crossing control

7: 1~5V MY061-E2 H:Unidirectional triac single phase zero crossing control

K:Triac 3 phase zero crossing control

L:Unidirectional triac 3 phase zero crossing control

C:Triac single phase angle control

Q:Unidirectional single phase angle control

S:Triac 3 phase angle control

D:Unidirectional 3 phase angle control

(5) Second control output [OUT2] (Cool-side)

N: No action

M: Relay contact V:Voltage pulse(for SSR))
2: Current(DC0~20mA) 8:Current(DC4 ~ 20 mA)

5: 0~5VDC 6: 0~10VDC

7: 1~5VDC T:Triac single phasezero crossing control

(6) Alarm 1[AL1] (7) Alarm 2[AL2] (8) Alarm 3[AL3]

See "6.3.1 alarm mode"

A: Deviation high alarm

B: Deviation low alarm

C: Deviation high/lowalarm

D: Deviation bandalarm

E: Deviation high alarm with hold action

F: Deviation low alarm with holdaction

G: Deviation high/low alarm with hold action

M: Deviation bandalarm with holdaction

H: Process high alarm

J: Processlow alarm

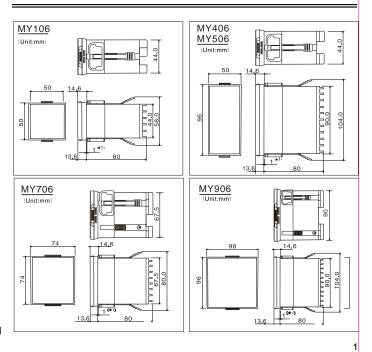
K: Process high alarm with hold action

L: Process lowalarm with holdaction

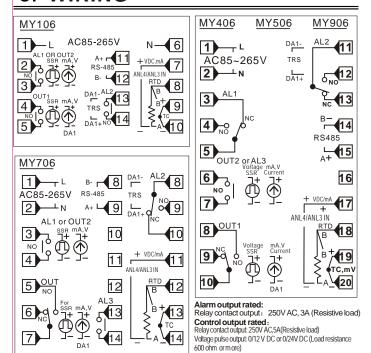
(9) Remark code: N

(10) Communication

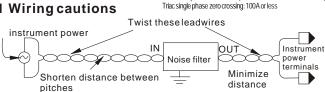
N: No Communication 5: Rs485 communication Modbus-RTU

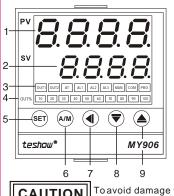

(11) Transmission

N:No transmission


C: PV transmission (4-20mA) E: SV transmission (4-20mA)
P: PV transmission (0-5V) R: SV transmission (0-5V)
Q: PV transmission (0-10V) S: SV transmission (0-10V)

(12)/(13)/(14)/(15) Remark code: N


2. MOUNTING SIZE

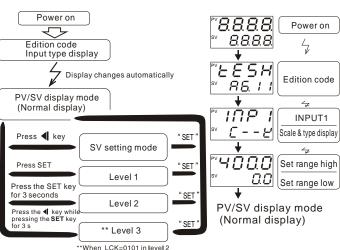

3. WIRING

3.1 Wiring cautions

PARTS DESCRIPTION

Measured value (PV) display [RED] Set value(SV)display [GREEN]

Current output: 4 to 20mA DC (Load resistance 500 ohm or less)


- OUT1lamp: Out1 output indication OUT2 lamp: Out2 output indication AT lamp: Autotuning indication AL1 lamp: Alarm 1 output indication AL2 lamp: Alarm 2 output indication AL3 lamp: Alarm 3 output indication MAN lamp: ,anual mode indication COM lamp: Communication indication PRG lamp: Remark lamp LED bar: Output1 % value indication
- SET key: Used for parameter calling up and set value registration
- A/M key: Auto/Manual key or set value registration

 I : Shift key and setting SV key 6
- : Down key, decrease numbers
- ▲ :Up key ,increase numbers

To avoid damage to instrument, never use a sharp CAUTION object to press keys.

5. SETTING

5.1 Calling up procedure of each mode

Display	11	23	E!	E 2	11	<i>J 2</i>	Π	ני
Input	K	K	E	Е	J	J	N	Wu3_Re25
Range	400.0 °C	1300 °C	300.0 ℃	600 °C	400.0 °C	800 °C	1300 °C	2000 °C

Display	5	Ŀ	Ļ	Ь	RNY	RN3	RN2	RN 1	PE /	PE2
Input	S	T	R	В	2-10VDC 1-5VDC	0-10VDC	0-50mV	0.20m\/	Pt100	Pt100
Range	1600 °C	400.0 °C	1700 °C	1800 °C	4-20mA	0-20mA	0-30111		-199.9~200.0 °C	-200~800 °C

5.2 Setting set value(SV)

Example: Following is an example of set value(SV) to 200°C

)Set to the SV setting mode	(2)Shift of the digit brightly lit	(3) Numeric value change	(4) Set value entry
PV <u>30</u> ⇒	PV 30 🖨	PV 30 D	PV 30
sv 🛮 🗓 🗓 🖟	sv II II	sv 200	sv 200
In the normal display	Press the shift key 41 to D	trose the LID key A to set "2" At	tor finishing the setting Press

In the normal display modePress ◀ key to enter the SV setting mode. The digit which flashingis settable

shift the digit which lights brightly up to the hundreds dights Press the UP key ▲ to set "2"

Pressing the UP key increase
numerals, and pressing the DOWN key ▼ decrease numerals

After finishing the setting, Press the SET key, All of the set value digits stop flash and as a result the instrument return to PV/SV display mode.

*In any time you can press A/M key to save value and exit to PV/SV mode.

5.3 Setting parameters other than set value (SV)

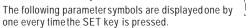
The setting procedures are the same as those of example (2) to (4) in the above "Setting setvalue (SV)". Press the SET key after the setting end shifts to the next parameter. When no parameter setting is required, return the instrument to the PV/SV display mode.

6. LEVEL

In any level you can press the SET key for 3 seconds to return the instrument to the PV/SV display mode, and register the value.

6.1 Level 1

Press the SETkey to level 1:



The following parameter symbols are displayed one by one every time the SET key is pressed. 1# Factory setvalue

Symbol	Name	Range	1#	Description
RĿ	Autotuning	NO or YES	NO	YES: Autotuning on, NO: Autotuning off
AL I	Alarm 1	-1999 to 9999	10	Set the alarm valuefor alarm 1 . Alarm differential gap=AH1
RL2	Alarm 2	-1999 to 9999	10	Set the alarm value for alarm 2 Alarm differential gap=AH2
RL3	Alarm 3	-1999 to 9999	10	Set the alarm valuefor alarm 3 Alarm differential gap=AH3
Ľ₽ď	Device address checking		1	Communication device address, only for checking.

6.2 Level 2

Press the SETkeyfor 3 seconds to level 2

one every t	imethe SET k	ey is press	sed.	1# Factory setvalue				
Symbol	Name	Range	1#	Description				
P !	Proportional band for out1	0.0~200.0	30.0	Proportional band in PID with unit ℃ for OUT1 P1=0.0, ON/OFF control for ouput1				
11	Integral time for out1	0-3600sec	240	Set the time ofintegral action to eliminate the offset occurring in proportional control.				
d !	Derivative time For out1	0-3600sec	60	Set the time of derivative action to improve control stability by preparing for output changes.				
ALGL	Auto tuning offset value (AtVL)	0-199	0	Set ATVL to preventovershoot occurred during autotuning process.				
CAF 1	Proportioning cycle for out1	0 to 999sec	20	Proportioning cycle time for PID control Only for out1 output				
HY5	Control Hysteresis For out1	0.0 to 100.0	1.0	Control out differential gap=HYS1 For out1 output. Only for ON/OFF action when P1=0.0				
P2	Proportional band for out2	0.0~200.0	20.0	Proportional band in PID with unit °C for OUT2 P2=0.0, ON/OFF control forouput1				
12	Integral time for out2	0-3600sec	240	Set the time ofintegral action to eliminate the offset occurringin proportional control.				
<i>d2</i>	Derivative time cycle for out2	0-3600sec	60	Set the time of derivative action to improve control stability by preparing for output changes.				
CAF5	Proportioning cycle for out2	0 to 999sec	20	Proportioning cycle time for PID control Only for out2 output				
HY52	Control Hysteresis For out2	0.0 to 100.0	1.0	Control out differential gap=HYS2 For out2 output. Only for ON/OFF action when P2=0.0				
GRP2	Control gap (For output 2)	0.0-200.0	10.0	Set point of output 2 (Cooling side) =SV + GAP2				
rЕ	Overshoot protection For out1	0.0 to 100.0	10.0	Overshoot protection for first power on or SV modify later.For out1 output. (Auto setting after autotuning)				
r5E /	Proportional reset For out1	-30 to 30	-5	Proportional reset for overshootprotection only for out1 output. (Auto setting after autotuning)				
r5E2	Proportional reset For out2	-30 to 30	0	Proportional reset for overshootprotection only for out2 output (Cooling side).				

MY061-E2

Symbol	Name	Range	1#	Description
OPL	Output1 limit (Low)		0.0	Output manipulated variable lowest limit For out1 output.
□PH	Output1 limit (High)	0.0 to 100.0%	100.0	Output manipulated variable highest limit For out1 output.
OPL2	Output2 limit (Low)		0.0	Output manipulated variable lowest limit For out2 output. (Cooling side)
DPH2	Output2 limit (High)	0.0 to 100.0%	100.0	Output manipulated variable highest limit For out2 output.(Cooling side)
PLO	Initial output value for OUT1	0.0 to 100.0%	0.0	Setting initial output value for manual operation with Power-on Manual function
<i>BUFF</i>	Output buffer only for out1	0.0 to 100%	100.0	Output variance value percentage per second buffer limit Only for 4-20mA output1
LEY	Set data lock	0000-0255	0	LCK=0000:Allow to modify any parameter and SV LCK=0001:Only allow to modify SV LCK=0010:Only allow to modify SV and Level1 LCK=0011:Not allow to modify any parameter and SV LCK=0101:Allow to setting Level3

NOTE: Some function of parameters, please see "8.", "9.", "10." specification. Some parameter symbols may not be displayed depending on the specification.

\$\overline{\pi} \ampli \ampli \quad \overline{\pi} \ampli \ampli

6.3 Level 3

6.3.1Go to level 3:

The following parameter symbols are displayed one by $\,$ one every time the SET $\,$

key is pr	key is pressed. 1# Factory setvalue									
Symbol	Name	Range	1#			Des	scri	otion		
/DP /	Main input	type selec								
"" "	Setting P1	5.5	E!	E 2	J	1 .	<u> </u>		ū	
	Input K	К	E	Е			J	N	Wu3_Re25	
	Range 400.0 °C	1300 °C 3	00.0 °C	600 °C	400.0	°C 80	00 °C	1300 ℃	2000 °C	
	Setting 5	E r	Ь	RD4 I	903	RN2	RΠ	I PE	1 PE2	
	Input s	T R	В	2-10VDC 0	0-10VDC 0-5VDC	0-50mV	0-20m\	Pt10	0 Pt100	
	Range 1600 ℃	400.0 °C 1700 °C	1800 °C	4-20mA)-20mA	U-30111V	0-20111	-199.9~200	.0 °C -200~800 °C	
	Note: AN4,AI without	N3 input typ calibration	e can .(Cus	not setting by keyboard, because of tom - made)						
ďP	Decimal point	0 ,1,2,3	0	0, 1, Only		neara	analo	g type i	nput	
LSPL	Low setting limiter	-1999 to 9999	0			setti int of		niter smissio	on	
USPL	High setting limiter	-1999 to 9999	400	Set h	nigh s er po	settin int of	g limi tran	ter smissi	on	
LIT IE	Display scale	0 ,1,2	0	2: w	ithou	it sca	ile (f		ar analog)	
PL'05	PV bias	-199to 199	0.0					iadeby ue(PV).	adding bias	
PLFE	PV follow-up PV input filter	0 to 60	55	PV variable-value control, 0-30: for general, 31-60:for enhand						
ROL I	Lowest value of PV display	-199~9999	0	Lowest value display when linear analog ,Such as 4-20mA input.					r analog inputs	
RNH I	Highest value of PV display	-1999~9999	2000	Highest value display when linear analo Such as 4-20mA input.					r analog inputs	
ALd I	Alarm1 mode	00 to 16	11	Select the type ofalarm1 See(**ALARM TYPE TABLE)						
RH I	Alarm1 differential gap	0.0 to 100.0	1.0							
AL d2	Alarm2 mode	00 to 16	10	Select the type ofalarm2 See(**ALARM TYPE TABLE)						
RH2	Alarm2 differential gap	0.0 to 100.0	1.0			ential g				
RLd3	Alarm3 mode	00 to 16	10			ype o		n3 ABLE)		
RH3	Alarm3 differential gap	0.0 to 100.0	1.0			ential g				
DUd	Control action	0 or 1	0				action (Heating)			
bEr	Buffer mode for out1analog output	0,1,2	0	O: No buffer for analog output1 1: Always with buffer for analog output1 2: With buffer when the output1 increases only. (Soft-start) Output variance value percentage per second buffer limit according BUFF in Level2				ses only.		
IdND	Device address setting	0-127	1	Comi	munic	ation	devic	e addr	ess setting.	
6AUd	Band-rate setting	0,1,2,3	2	BAU		2.4K 9.6K		1: 4.8K 3:19.2I		

**ALARM TYPE TABLE (ALd_=00~16)

- 10: No alarmoutput
 11: Deviation high alarm
 12: Deviation low alarm
 13: Deviation high/low alarm
 14: Deviation band alarm
- 00: No alarm output
 01: Deviation high alarm with hold action
 02: Deviation low alarm with hold action
 03: Deviation high/low alarm with hold action
 04: Deviation band alarm with hold action
- 05: Process high alarm with hold action 06: Process lowalarm with hold action
- 15: Process high alarm16: Process low alarm

6.3.2 Alarm mode specification

Code	ALd□	Specification (Example for alrm1)						
N	10 or 00	No alarm						
	11	AL1≥0 Deviation high alarm SV AH1 Alarm ON LOW SV ASV+AL1						
A		AL1<0 EAH1 Alarm ON Deviation high alarm						
В	12	AL1≥0 Deviation low alarm Alarm ON AH1: LOW SV SV+AL1 Beviation low alarm Deviation low alarm Deviation low alarm						
		AL1<0 Alarm ON AH1: Deviation low alarm						
С	13	Deviation high/low alarm Alarm ON AH1**: AH1 Alarm ON LOW SV-AL1 SV SV+AL1 HIGH						
D	14	Deviation band alarm Alarm ON LOW SV-AL1 SV SV+AL1 HIGH						
Н	15	Process high alarm Alarm ON LOW AL1 HIGH						
J	16	Alarm ON AH1 HIGH						
	01	AL1≥0 Deviation high alarm withhold action ∴ AH1 Alarm ON LOW SV						
E		AL1<0 Deviation high alarm withhold action Alarm ON						
		AL1≥0 Deviation low alarm with hold action Alarm ON AH1: LOW SV A SV+AL1 HIGH						
F	02	AL1<0 Deviation low alarm with hold action Alarm ON AH1: LOW SV+AL1 SV HIGH						
G	03	Deviation high/low alarmwith hold action Alarm ON AH1 Alarm ON						
М	04	Deviation band alarmwith hold action Alarm ON HIGH HIGH HIGH						
K	05	Process high alarm with hold action Alarm ON Alarm ON						
		Process low alarm with hold action						
L	06	Alarm ON AH1 HIGH						
NOTE								

NOTE:

With hold action:

When Hod action is ON, the alarm action is suppressed at start-up until the measured value enters the non-alarm range.

7.MANUAL OPERATION

All instrument except MY106 with manual operation key (A/M)

Example: Following is an example of manual setting to 70% output.

Auto control mode 50

SET) (A/M) (◀) (▼) (▲

MAN lamp is turns

off in Auto control

mode.

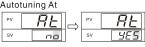
Manual setting mode Press A/M key for 3 seconds 80.O *‰* ● ●

Press A/M key for 3 seconds to manual setting mode. In manual setting mode, MAN lamp light up, The digit which flashing is settable.

70.0

Manual control mode

Pressing the UP key increase numerals and pressing the DOWN key decrease numerals. Press SET key after set value to 70.0.


*In manual control mode ,press A/M key for 3 seconds to auto control mode. *Power-on Manual function can be selected. Pko in level2 for initial output value.

*A/M key can also be used for SAVE and EXIT key.

8. AUTOTUNING

When controller's power are just on, it will be good to autotuning when the measured value is far lower than the set value

Press SET key to level 1

Press ≜key set At=YES

Press SET key ⇒for 3 seconds to exit level.

Autotuning start.

1, When begin to autotuning, AT light flash, which means to begin to autotuning, if you want

1, When begin to autotuning, AT light flash, which means to begin to autotuning, if you want to exit from autotuning, please enter into the AT menu, set AT=no 2,In the middle of the autotuning, it is ON/OFF control, according to the different systems, temperature may be have a big variance and the autotuning time is of a long short. 3,After finishing autotuning, AT light stops flashing, controller will automatically save P1, I1, d1, FE, rSt1 parameters, then automatic return to the normal control state, controller will continue to run with new P1, I1, d1, FE, rSt1 parameters value 4,In some special occasions, if you can not control by autotuning, or the autotuning effect is bad, please set parameters by manual. 5,P1 is proportional band of the first group OUT1, the standard proportional band range is Set value=SV±P1/2, as usual, we set P1=10% to 15% of SV. 6,I1 is the integration time of the first group OUT1, as usual I1 is setted about 200 before leaving factory. If I1 is smalller, the integral action will be bigger, and the feedback to the temperature difference will be bigger. But if I1 is too small, it will lead to the temperature swinging up and down around the set value. swinging up and down around the set value

(1)If temperature is not up for a long time, and the output is still not increased more, can reduce the integration time I1

(2)If temperature is up overshoot for a long time and output is still heating, can reduce the integration time I1

(3)If temperature swings up and down around the set value for a long time, can increase the integration time I1
,D1 is the differential time of the first group OUT1, which is equal to 20% to 30% of the

integration time. Derivative action is main used to cause the inhibition of the overshoot (because of integral action).d1 is bigger, derivative action is stronger.

(1)When go into the proportional band, if the output heating is bigger, temperature will overshoot, you can increase the derivative time. If the temperature decrease more,

oversnoot, you can increase the derivative time. If the temperature decrease more, which will lead to the undershoot, then you can increase the derivative time.

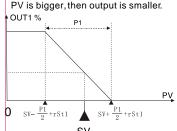
(2) In some control situation, if the system feedback is very sensitive, which means that the output slight variations will lead to a big variations in the goal Value, then you can reduce the derivative time, or close the derivative time (d1=0). Using this, control is stable, such as in the constant-pressure water supply system.

Parameter rE is used to cause the inhibition of the overshoot (in the first heating of OUT1), so the overshoot caused by each value change after control system estability, rE is only

or the overshoot caused by set value changes after control system stability. rE is only useful first, this function will be automatically cancelled when temperature reach to the goal value, If rE is set too big, the first heating will not easy to overshoot, but the first output will be very slowly.

output will be very slowly.

o,rtSt1 is the reset of the OUT1 proportion, which is used to eliminate static errors in the pure time proportion control, in PID control,rSt1 can be used to adjust the proportion band to reach the system stability quickly.

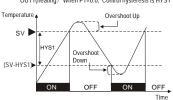

(1) when the thermal inertia is big in the heating system, usually rSt1 is negative, pls note this value can not be too small(when rst1>-P1/2,e.g P1=30.0, rSt1>-15).usually rSt1=0, in the heating system, the value is smaller, the heating will be slower

(2) While in the PID cooling system,rSt1 is positive, if this value is bigger, the colling will be slower

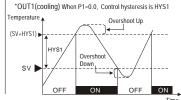
he slower

CONTROL MODE SPECIFICATION

1)OUT1 side, PID reverse action(heating) |(2)OUT1 side, PID direct action(cooling) PV is bigger, then output is bigger.



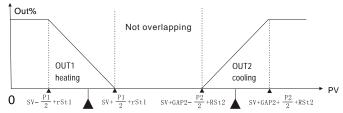
rSt1 value is smaller, then output is smaller.


OUT1% PΥ $SV + \frac{P1}{2} + Rst1$ $\frac{P1}{2}$ +Rst1

rSt1 value is biger, then output is smaller.

(3)OUT1 side, ON/OFF control (heating) *OUT1(heating) When P1=0.0, Control hys

(4)OUT1side, ON/OFF control(cooling)



10. HEATING/COOLING SPECIFICATION

If the thermal inertia of the controlled temperature is bigger, it will be difficult to natural cooling, we can use the cooling output control at the same time, Just use 1 pc controller can have heating and cooling dual output control.

**Below illustration using the puretime proportion control

Using GAP2 and rSt1 or rSt2, you can have heating/cooling control or just single control

SV for heating

SV+GAP2 for cooling

By setting the P2, 12,d2 etc parameters, you can have the different OUT2 controls mode, such as PID control, time proportion control oron/off control, to meet with different requirements of cooling actuator.

11.COMMUNICATION SPECIFICATION

(1) Communication protocol is Modbus-RTU, support03 readcommand,06 or 10 write command

(2) Communication mode: single-master RS485 asynchronous serial communication

baud rate: 2400, 4800, 9600, 19200(9600 baud rate is acquiesced) Byte date format:1 start bits,+8 databits+No parity checking+1 Stop bits

(3) Controllers support writing 36 data more, when writing data, if the address is beyond 0048H, the address will still write data as 0048H

(4) Controllers support reading 37 data more, when reading data, if the address is beyond 0048H, then read data=0

(5) Parameter addressplease see "MY06 series communication address list"

12. INPUT RANGE TABLE

	Input type	Code		Input type				Code	
	0.0 to 100.0 °C	2	D1		0.0		СР	06	
K1	0.0 to 200.0 °C	2	D2		0.0		СР	07	
1	0.0 to 300.0 °C	2	D3		0.0		C P	11	
	0.0 to 400.0 °C	2	D4	Pt1	0.0		C P	08	
	0 to 200 °C	K	A2	(Pt100)	-50.0		C P	12	
K2	0 to 400 °C	K	A4	(,	-50.0		C P	13	
	0 to 600 °C	K	A6			.0 to +100.0°	_	04	
	0 to 1300 °C	K	В3			0 to +200.0°C		05 02	
	0.0 to 100.0 °C	3	D1		0			A1	
E1	0.0 to 200.0 °C	3	D2		0			A1	
	0.0 to 300.0 °C	3	D3		0			A4	
	0 to 200 °C	Е	A2		0			A4 A6	
E2	0 to 400 °C	E	A4		0		C D	A8	
	0 to 600 °C	Е	A6	Pt2	-50		C D	C1	
J1 -	0.0 to 100.0 °C	1	D1	(Pt100)	-100		C D	C2	
	0.0 to 200.0 °C	1	D2		-100		C D	C2	
	0.0 to 300.0 °C	1	D3		-200		C D	C4	
	0.0 to 400.0 °C	1	D4		-200			C5	
	0 to 200 °C	J	A2		-200			C6	
J2	0 to 300 °C	J	A3		-200			C7	
32	0 to 400 °C	J	A4		-200			C8	
	0 to 800 °C	J	A8		-200	10 000 (- 00	
	0.0 to 100.0 °C	Т	D1		nput ty	pe	С	ode	
T	0.0 to 200.0 °C	T	D2	AN1 0 to 20			V		
	0.0 to 300.0 °C	Т	D3	AN2 0 to 50		-1999 to 9999	9 V		
	0.0 to 400.0 °C	Т	D4	AN3 0 to 5\	/DC	-199.9 to 999.	o V		
s	0 to 1000 °C	S	B0	AN3 0 to 10	OVDC	177.7 10 777.	. 7 V	04	
	0 to 1600 °C	S	B6	AN4 1 to 5\		-19.99 to 99.9			
R	0 to 1000 °C	R	B0	AN4 2 to 10		-1.999 to 9.99	, V		
- '	0 to 1700 °C	R	B7	AN4 4 to 20		-1.777 10 7.97	A		
В	200 to 1000 ℃	В	B0	AN3 0 to 20			A		
	200 to 1800 ℃	В	B8	AN3 0 to 10)mA		A	01	
N	0 to 1000 °C	N	B0						
Wu3_Re25	0 to 1300 °C 600 to 2000 °C	N	B3						
wus_Re25	600 to 2000 ℃	W	B0						

Note: Clients can set TC, RTD by keyboard please set the input type coinide with the sensor. Check details of the manual "6.3" parameter INP1, If need analog signal inputs, please specified when order.(Except 0-20mV or 0-50mV input)

TESHOW(S.H.)ELECTRONIC XIAMEN TESHOW CO.,LTD.

AUG.2012

MY061-E2